Color and Albedo Heterogeneity of Vesta from Dawn
Vishnu Reddy et al.
Science 336, 700 (2012);
DOI: 10.1126/science.1219088

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of July 23, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/336/6082/700.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2012/05/09/336.6082.700.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/336/6082/700.full.html#related

This article cites 26 articles, 6 of which can be accessed free:
http://www.sciencemag.org/content/336/6082/700.full.html#ref-list-1

This article has been cited by 7 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/336/6082/700.full.html#related-urls

This article appears in the following subject collections:
Planetary Science
http://www.sciencemag.org/cgi/collection/planet_sci
Color and Albedo Heterogeneity of Vesta from Dawn

Vishnu Reddy,1,* Andreas Nathues,1 Lucille Le Corre,1 Holger Sierks,1 Jian-Yang Li,3 Robert Gaskell,4 Timothy McCoy,5 Andrew W. Beck,6 Stefan E. Schröder,4 Carle M. Pieters,6 Kris J. Becker,7 Bonnie J. Buratti,8 Brett Denevi,9 David T. Blewett,9 Ulrich Christensen,1 Michael J. Gaffey,2 Pablo Gutierrez-Marques,5 Michael Hicks,8 Horst Uwe Keller,10 Thorsten Maue,1 Stefano Mottola,11 Lucy A. McFadden,12 Harry Y. McSween,13 David Mittlefehldt,14 David P. O’Brien,4 Carol Raymond,8 Christopher Russell15

Multispectral images (0.44 to 0.98 μm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rhea Silvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that include chronicle processes—including impact excavation, mass wasting, and space weathering—that shaped the asteroid’s surface. Vesta’s color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet.

The Dawn spacecraft rendezvoused with the asteroid Vesta on 16 July 2011, and the Framing Cameras (FCs) (/) acquired images in seven colors (0.44 to 0.98 μm) and one broadband clear filter, mapping the entire sun-lit surface at a detail of ~9 to ~0.016 km/pixel. We used...
these images to determine the global color characteristics and compositional heterogeneity of the asteroid’s surface. The diversity of collected meteorites indicates that in the early solar system, the main asteroid belt held more than 100 large asteroids that were partially or totally melted but subsequently destroyed by collisions (2). Today, Vesta is the only surviving silicate-rich differentiated object (3). Two major goals of the Dawn mission are to help answer why Vesta is the only remaining member of this class and to use its history to understand terrestrial planet formation.

Vesta is the likely parent body of the howardite-eucrite-diogenite (HED) meteorites. Eucrites are crustal basalts, petrologically similar to terrestrial basalts; diogenites are ultramafic cumulates, likely formed in the lower crust of the asteroid; and howardites are physical mixtures (regolith) of eucrites and diogenites formed by impact processes. Spectroscopic (4) and petrologic evidence (5) originally suggested a HED-Vesta link, and the 3:1 mean-motion resonance with Jupiter at 2.5 AU could provide a pathway for pieces ejected from Vesta to near-Earth space (6). This connection was further solidified by the detection of the “Vestoids,” a group of smaller (<10 km) asteroids that are spectrally similar to Vesta and span the orbital region between Vesta and the 3:1 resonance (7).

We converted the FC images to reflectance (I/F) by dividing the observed radiance by the solar irradiance from a normally solar-illuminated Lambertian disk, photometrically corrected to standard viewing geometry (30° incidence and 0° emergence and 30° phase angles). This was accomplished by using Hapke functions derived from disk-integrated ground-based telescopic observations of Vesta and Vestoids, as well as resolved data from the approach phase of the mission (8). A fit of the Dawn survey data in the wideband clear filter to Hapke’s model yields fits to the Hapke parameters of 0.52 for the single scattering albedo (SSA), −0.29 for the backscattering parameter (confirming that Vesta’s surface is backscattering as other asteroids are), and 20° for the mean slope angle defining macroscopic roughness. For each color acquisition, subpixel coregistration was accomplished to

Fig. 1. Color mosaics of Vesta obtained during the approach phase (~480 m/pixel) in simple cylindrical projection. (A) Photometrically corrected 0.75-μm filter global mosaic showing east-west and north-south dichotomies in reflectance. (B) Clementine color ratios mosaic using $C_R = R(0.75)/R(0.45)$, $C_G = R(0.75)/R(0.92)$, and $C_B = R(0.45)/R(0.75)$, where $R(\lambda)$ is the reflectance in a filter centered at λ(micrometer) and C_R, C_G, C_B are the colors red, green, and blue, respectively. Greener areas have deeper bands, and redder areas have steeper visible slopes relative to bluer areas. (C) Rainbow-color coded map of $R(0.75)/R(0.92)$ ratio (proxy for 0.90-μm pyroxene band depth) showing areas with deeper bands as red. (D) Rainbow-color coded map of $R(0.98)/R(0.92)$ ratio (Eucrite-Diogenite) showing diogenite-rich regions as red and eucrite-rich regions as blue (8). (E) Color-shaded topographic map of Vesta with white corresponding to the highest elevation and blue the lowest. Minimum and maximum elevations are computed relative to a 285- × 229-km reference ellipsoid. All maps are based on the new Claudia coordinate system, which is different from the older Olbers system used with the Hubble Space Telescope data. Olbers reference longitude is located approximately at 210°E in the Claudia system.
align the seven color frames in order to create color cubes before analysis.

Global maps show variations in 0.75-μm albedo (Fig. 1A) and the 0.90-μm pyroxene absorption depth $R(0.75)/R(0.92)$ (Fig. 1C). The ratio $R(0.98)/R(0.92)$ qualitatively identifies eucrite- and diogenite-rich terrains (Fig. 1D). All of these features show a weak relation to topography (Fig. 1E). A false color composite quantifies band depth and visible slope (Fig. 1B). Because eucrites have more ferroan pyroxene than diogenites (fig. S1), their 0.90-μm pyroxene band is shifted toward longer wavelength (fig. S2) (8, 9), causing the $R(0.98)/R(0.92)$ to be closer to 1 for eucrites but higher for diogenites (Fig. 1D). We further confirmed the compositional identification of specific color units with laboratory spectra of HED meteorites using several spectral criteria (10).

The maps (Fig. 1, A to E) reveal a hemispherical scale dichotomy on Vesta. The brightest point (in clear filter) is on a crater wall near the south pole that has a SSA of ~0.82 and a geometric albedo of ~0.67; the darkest area has a SSA of ~0.15 and a geometric albedo of only ~0.10. This range is much higher than is seen in other asteroids (8). The global albedo map also exhibits an overall lower reflectance in the eastern hemisphere as compared with the western (3, 11). The area located between 30°S and the Rheasilvia Formation at the south pole also has higher albedo as compared with that of the northern hemisphere (Fig. 2, A and B). In addition, two distinct lower albedo units are associated with the ejecta of the Marcia (10°N, 190°) and Oppia (8°S, 309°) impact craters.

This dichotomy reflects both Vesta’s composition and regolith processes. Abundance of mafic minerals (iron abundance), space weathering, grain size, and presence of opaque minerals are known to affect the $R(0.75)/R(0.92)$ ratio (8). Laboratory study of HED meteorites suggests that grain size is a major cause for band depth dichotomy (8). Unlike the Moon, where the highland units have higher albedo as compared with those of lower and darker mare, Vesta does not seem to have distinct global correlation between topography and albedo or color.

Along with global color dichotomy, we have identified various terrains on Vesta that are further evidence for surface heterogeneity. We have classified these areas as bright, dark, gray, and orange terrains (Fig. 3, A to H). Fresh impact craters have higher reflectance (30 to 40% in the 0.75-μm filter) than that of background surface and are associated with bright terrains (such as the Canuleia crater) (Fig. 3, A and B). They also have deeper 0.90-μm pyroxene absorption band. In the south, several fresh craters appear redder in the eucrite/diogenite (ED) ratio maps, suggesting that diogenite-rich material was excavated within Rheasilvia. By comparing the color spectra of bright material with global average, we find that the $R(0.75)/R(0.92)$ ratio is 16% deeper, and the visible spectral slope (0.45 to 0.55 μm) is also steeper (Fig. 4, A and B).

Fig. 2. Stereographic projection centered on the south pole of (A) the color mosaic in Clementine color ratios overlaid on a shaded-relief map and of (B) the color-shaded topographic map.

Fig. 3. Examples of diverse color terrains on Vesta in 0.75-μm filter (left) and Clementine ratio (right). (A and B) Bright ejecta around the 11.2-km diameter fresh impact crater Canuleia located at 33.7°S, 294.5°E. (C and D) Dark material on the crater wall and in the surroundings of the 30-km diameter Numisia crater located at 7°S, 247°E. (E and F) Gray ejecta blanket of the 58-km diameter Marcia crater (top left) located at 10°N, 190°E. (G and H) The 34-km diameter impact crater Oppia located at 8°S, 309°E, with orange ejecta blanket.
Dark material is commonly associated with impact craters (such as the Numisia crater) (Fig. 3, C and D), but dark deposits are also seen elsewhere in >25 locations. In some cases—Lucaria Tholus—dark material is associated with a topographic high. In addition, several fresh impact craters exhibit excavation of bright and dark material within the crater walls and ejecta blankets (Fig. 3, C and D). They have lower reflectance (8 to 13% at 0.75 µm), weaker band depth (Fig. 4, A and B) and have a redder visible spectral slope. Either the excavation of a darker subsurface layer or the incorporation of dark material by an impactor could explain the observed morphology of these units. The dark material on Vesta may indicate the presence of impact melts and exogenous carbonaceous material (8), both of which are seen in the HED meteorites.

Most of the surface of Vesta is covered with gray material (0.75-µm reflectance, ~15 to 30%). This material has a moderate $R(0.75)/R(0.92)$ ratio (Fig. 4, A and B). In craters, downslope movements have unveiled underlying bright material. Hence, gray material could correspond to a mixture of bright and dark material or space-weathered bright material. Space weathering affects optical properties of the regolith of planetary bodies without an atmosphere. A second type of gray material is associated with ejecta blankets around large impact craters such as the Marcia crater (Fig. 3, E and F) and is possibly impact melt. This gray material has a 0.75-µm reflectance of ~15%, a shallow visible slope, and the second weakest $R(0.75)/R(0.92)$ ratio (Fig. 4, A and B).

The Oppia crater displays asymmetric orange ejecta in the Clementine ratio map (Fig. 3, G and H) that is spread toward the southeast. The morphology of Oppia could be explained by an oblique impact or an impact on a slope. This particular unit has a steep visible spectral slope (redder in Clementine ratios) and a weak $R(0.75)/R(0.92)$ ratio; thus, it has a shallower 0.90-µm pyroxene band as compared with the global mean spectrum (Fig. 4, A and B). Several lighter “orange patches” are also observed to the west and north around Oppia (Fig. 3, G and H). Band depth and ED maps (Fig. 1, C and D) show that areas with deeper $R(0.75)/R(0.92)$ ratios also tend to have higher $R(0.98)/R(0.92)$ ratios (8). This correlation suggests that diogenite-rich material has a deeper $R(0.75)/R(0.92)$ ratio as compared with that of eucrite-rich material. Terminals with higher ratios surround Rheasilvia basin in the south, whereas Vesta has lower ratios in the north (Fig. 1, C and D). The observed variance is consistent with diogenite-rich terrains (red) in the south and more eucritic terrains (blue) in the north, which is in agreement with Visible and Infrared Imaging Spectrometer observations (12). This north-south dichotomy is disrupted by a swath (~0 to 90°E) of relatively higher $R(0.75)/R(0.92)$ and $R(0.98)/R(0.92)$ ratio material that protrudes to the northern extent of Dawn’s observations (Fig. 1, C and D). This swath is probably impact ejecta from the Rheasilvia forming event because it is topographically higher than adjacent terrains (Fig. 1E) and has similar $R(0.75)/R(0.92)$ and $R(0.98)/R(0.92)$ ratios to Rheasilvia material (Fig. 1, C and D). Also, meteoritical evidence suggests that diogenitic material probably formed deep beneath the surface of Vesta (13). The central peak of the Rheasilvia basin has a strong $R(0.75)/R(0.92)$ ratio (Fig. 2A), implying that it is dominated by material with a strong 0.90-µm pyroxene band (diogenite-rich).

The high rim of Rheasilvia (Figs. 1, C and D, and 2, A and B) is dominated by high $R(0.75)/R(0.92)$ and $R(0.98)/R(0.92)$ ratio material, which is consistent with diogenite-rich rocks that have been excavated from depth and deposited as ejecta. However, the abundance of deeper-band material is not homogeneous along the entire Rheasilvia rim. The eastern portion, between ~0 and 130°E, has higher concentrations of high-band-ratio material than the western portion (210 to 300°E), which is consistent with the western portion containing relatively more eucritic material. The origin of this variation is not immediately clear. Given that the western portion of the rim is topographically higher (Figs. 1E and 2B), we would expect it to contain higher concentrations of diogenite material (ejecta), which it does not. This may be an indication that the western portion of the Rheasilvia ejecta rim sampled previously re-worked lithologies, which may be linked to the large pre-Rheasilvia basin impact (14).

Two localized concentrations of the highest $R(0.75)/R(0.92)$ and $R(0.98)/R(0.92)$ ratio material occur in areas associated with Rheasilvia (Figs. 1, C to E, and 2, A and B). The first (43 to 55°S, 51 to 87°E) coincides with a large scarp face, possibly indicating diogenite-rich material exposed along the rim and wall of the basin, and deposited nearby in the ejecta material. The second location (53 to 64°S, 180 to 230°E) is at a topographical low in the Rheasilvia basin floor and corresponds to the Antonia crater and its associated ejecta. Given the likely depth of excavation and the high-band-ratio signature, this material may be an in situ diogenite lithology that has been exposed by the Rheasilvia impact event.

In a magma ocean model, a single, deep-seated layer of diogenitic material is expected (15), and if this region in the Rheasilvia basin is the only region with in situ diogenite material identified on Vesta, a magma ocean model may be favored. Our analyses show that Vesta was large enough to accrete material and differentiate during the first few million years of Solar System formation. Although battered by multiple impacts, Vesta remains intact today probably because of its differentiated internal structure. These catastrophic events have not only excavated deeper
coupling quantum tunneling with cavity photons

Peter Cristofolini,1 Gabriel Christmann,2 Simeon I. Tzintzos,1,2 George Deligeorgis2* George Konstantinidis,3 Zacharias Hatzopoulos,2 Pavlos G. Savvidis,2,3 Jeremy J. Baumberg††

Tunneling of electrons through a potential barrier is fundamental to chemical reactions, electronic transport in semiconductors and superconductors, magnetism, and devices such as terahertz oscillators. Whereas tunneling is typically controlled by electric fields, a completely different approach is to bind electrons into bosonic quasiparticles with a photonic component. Quasiparticles made of such light-matter systems: electrical trapping and tuning of excitons, strong optical coupling to low-mass quasi-particles with large de Broglie wavelength, and efficient in-plane electrostatic traps (9, 10) and the coherent control of electron spins (11). By embedding double quantum wells inside a conventional microcavity in the strong coupling regime, we unite the concepts of indirect excitons and microcavity polaritons to produce optically active quasiparticles with transport properties, named dipolaritons. These offer the advantages of both systems: electrical trapping and tuning of excitons, strong optical coupling to low-mass quasi-particles with large de Broglie wavelength, and excellent control over the dipole properties and interactions (12, 13).

Microcavities are formed from p-i-n semiconductor multilayers surrounded by doped multilayer mirrors (7) (Fig. 1A; details in the supporting online material) and pumped with a nonresonant laser. Quantum wells (QWs) of InGaAs inside the cavity are arranged in asymmetric pairs separated by a thin barrier (of width Ld) that allows electrons to tunnel between the two wells (Fig. 1A). Because of the large effective hole mass and the wide energy separation of hole levels in neighboring QWs, hole tunneling is negligible, and only the low-energy left QW (LQW) hole state is considered. Without tunneling, there are two types of exciton in this system. The direct exciton |DX⟩ has both electron and hole in the left QW (Fig. 1B, top) and therefore strongly couples to the cavity mode, with its induced dipole moment oriented randomly in the QW plane. The indirect exciton |DX⟩ has the hole in the left QW and the electron in the right QW—thus possessing an additional static dipole moment aligned perpendicularly to the plane—and has a very small overlap of electron and hole wave functions, hence low oscillator strength. When a bias voltage is applied to bring the electron levels into resonance, the electron states in the two QWs mix to give symmetric and antisymmetric electron wave functions (red in Fig. 1A), which, together with the low-energy hole states (blue) in the left QW, produce the exciton modes (1/√2)[|DX⟩ ± |DX⟩], split by the tunneling energy ET (where h is Planck’s constant divided by 2π). These modes combine the large oscillator strength of the DX with the large static dipole moment of the IX (Fig. 1B, bottom).

Embedding DX and IX excitons in the microcavity with cavity mode C now forms a three-state system similar to the atomic A-scheme (14, 15), which is coupled optically by the vacuum Rabi frequency Ω and electronically by the electron tunneling rate J (Fig. 1C). Although J and Ω are intrinsic to the microcavity design, full control of the dipolariton modes is possible through bias voltage control of tunneling and angle tuning of the cavity mode. In the strong coupling regime, when J is larger than the carrier escape rate from the coupled QWs and Ω is faster than the photon decay rate, the system displays three distinct eigenmodes: the lower (LP), middle (MP), and upper (UP) dipolaritons. Thus, a conventional microcavity polaron (Fig. 1D, black) can be simply bias-tuned to yield the dipolariton spectrum (red) in the strong tunneling regime.

The bias dependence of the photoluminescence (PL) of a mesa with barrier width LB = 4 nm (Fig. 2) clearly reveals these three dipolariton modes. Because in-plane wave vectors ⃗k are conserved, photons emitted at an angle θ directly measure dipolaritons at ⃗k. At normal incidence (Fig. 2, A and C) the narrow cavity mode is detected below the excitons, whereas at 35° (Fig. 2, B and D) the uncoupled modes are all degenerate. For higher electric fields, the PL emission weakens because electrons escape the coupled QW system before they can recombine radiatively with a left QW hole, and eventually two of the modes vanish, leaving only the most cavity-

References and Notes
1. NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK. 2FORTH-IIESL, Post Office Box 1527, 71110 Heraklion, Crete, Greece. 3Department of Materials and Science Technology, University of Crete, Post Office Box 2206, 71003 Heraklion, Greece.
2. Present address: CNRS, LAAS, 7 avenue de Colonel Roche, F-31077 Toulouse Cedex 4, France.
3To whom correspondence should be addressed. E-mail: jjb12@cam.ac.uk

Acknowledgments: We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Vesta. The Framing Camera project is financially supported by the Max Planck Society and the German Space Agency, DLR. We also thank the Dawn at Vesta Participating Scientist Program for funding the research. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Dawn data are archived with the NASA Planetary Data System.

Financial Support: The research was supported in part by the EU (through the FP7 project QUASAR, 2011–2014). The work was also supported by the European Research Council Advanced Grant 247035 (DEEP Structures).

†‡To whom correspondence should be addressed. E-mail: jjb12@cam.ac.uk

8. Materials and methods are available as supplementary materials on Science Online.
11. J.-Y. Li et al., Icarus 208, 238 (2010).