Locations of thin liquid water layers on present-day Mars

Akos Kereszturi a,b,⁎, Edgard G. Rivera-Valentin c

Abstract

CRISM indicates the presence of water ice patches in Richardson crater, located on Mars’ southern polar region at the area of the seasonal ice cap. Numerical simulations suggest that the maximum daytime temperature of the ice at these locations is between 195 and 220 K during local spring. Previous studies suggest that at these temperatures liquid interfacial water could be present. Here, for the first time, we provide an example where the environmental conditions allow for the formation of such liquid films on present day Mars at the southern hemisphere. The upper bound estimated H2O loss during the presence of these water ice patches is approximately 30 μm between Ls = 200 and 220, though it may be as low as 0.1 μm depending on the ambient water vapor. The upper bound value is larger than the expected condensation thickness in autumn; however, it may still be realistic due to CO2 gas jet generated deposition and possible subsequent accumulation on mineral grains. The presence of this interfacial water may have impact on local chemical processes along with astrobiological importance.

1. Introduction

The mounting evidence that liquid water is present on Mars today is one of the most important regarding active geochemical processes and the planet’s astrobiological potential. Some theoretical models predict that liquid water may be present (Clow, 1987; Haberle et al., 2001; Hecht, 2002), above all as interfacial water (Mohlmann, 2004, 2010; Kossacki and Markiewicz, 2008) where water ice is in physical contact with mineral grains. Salts may influence the appearance of liquid water by decreasing the melting point. The presence of these water ice patches is approximately 30 μm between Ls = 200 and 220, though it may be as low as 0.1 μm. Since the temperature during the presence of water ice cover may be close to the threshold limit (180 K) for interfacial water formation along the mineral–water ice interface, it is important to elucidate the possible appearance of liquid interfacial water at the DDS. In this study, we modeled the temperature at these small areas in order to investigate the possibility of liquid water formation.

2. Methods

Observational data and modeling results were used to analyze the possibility of interfacial water at the target regions. Imaging data was acquired from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE), and topographic data from MOLA and HRSC digital terrain models (DTMs) based on stereo images.

2.1. Observational data analysis

Using CAT-ENVI software (Morgan et al., 2009), we analyzed CRISM spectral data (Murchie et al., 2007) within Richardson crater.
true solar time with spatial resolution of approximately 3–8 km. As a result, these values can only be considered a rough approximation of the surface temperature throughout the analyzed terrains and therefore are used only to analyze annual trends and to correlate them with model estimated values. For the analysis of certain solar longitude intervals at the surveyed locations, Thermal Emission Imaging System (THEMIS) and OMEGA (Visible and Infrared Mineralogical Mapping Spectrometer) data are not sufficient because their rare acquisition date and different local time.

2.2. Thermal modeling

Surface and subsurface temperatures were calculated by solving the one-dimensional thermal diffusion equation using a finite element approach as described by Rivera-Valentin et al. (2011), Rivera-Valentin (2012) and Ulrich et al. (2010). This method allows for the high spatial resolution required within this study. The vertical extent of the homogenous regolith column modeled was considered down to several times the annual skin depth in order to accurately reach convergence. Thus, the model simulated temperatures to a depth of 10 m with finite element thickness of 0.01 m and a corresponding time step of 10 s. The surface boundary condition for the column was considered radiative where the incoming solar heat flux is given by:

$$Q_{\text{solar}} = (1 - A) \frac{S_0}{\pi} \cos \theta T(\zeta, \tau)$$

where A is albedo, S_0 is the solar flux at 1 AU, θ is the instantaneous Sun–martian distance in AU, ζ is the solar angle to zenith, and $T(\zeta, \tau)$ is the transmission coefficient, which is a function of the zenith angle and the atmospheric opacity (τ). As is shown in Blackburn et al. (2009), the transmission coefficient is a polynomial fit to the data from Pollack et al. (1990) as presented by Rapp (2008). Atmospheric perturbations to the incoming heat flux considered were the indirect solar illumination due to scattering ($Q_{\text{scattering}}$) and atmospheric thermal emission (Q_{atm}):

$$Q_{\text{scattering}} = (1 - A) \frac{S_0}{\pi} f_{\text{scat}} (1 - T(\zeta, \tau))$$

$$Q_{\text{atm}} = (1 - A) \frac{S_0}{\pi} f_{\text{atm}} e^{\cos(\delta - \phi)}$$

where f_{scat} (0.02) and f_{atm} (0.04) are the fractional amounts of the relevant flux reaching the martian surface (Schmidt et al., 2009), δ is the solar declination, and ϕ is latitude (Kieffer et al., 1977; Applebaum and Flood, 1989; Aharonson and Schorghofer, 2006; Blackburn et al., 2009; Schmidt et al., 2009; Rivera-Valentin et al., 2010; Ulrich et al., 2010; Rivera-Valentin, 2012). The lower boundary condition includes a modest geothermal heat flux from below assigned as 30 mW/m² as previously applied by Ulrich et al. (2010).

We assumed a homogenous regolith column whose thermal properties were obtained as a weighted mass fraction of water ice and soil such that:

$$k = k_{\text{ice}} + k_{\text{soil}} (1 - f_{\text{ice}})$$

$$C = C_{\text{ice}} + C_{\text{soil}} (1 - f_{\text{ice}})$$

where k is thermal conductivity, C is volumetric heat capacity, f_{ice} is the fractional amount of ice within the soil column, and the subscripts denote the material. The thermal conductivity of water ice at the average surface temperature at the latitude considered is 3.4 W m⁻¹ K⁻¹ (Petrenko and Whitworth, 1999) with a volumetric heat capacity of 1.4×10^8 J m⁻³ K⁻¹ (Giaque and Stout, 1936). The soil’s thermal properties were obtained from the Phoenix Lander results, which found a thermal conductivity of 0.085 W m⁻¹ K⁻¹ and volumetric heat capacity of 1.05×10^8 J m⁻³ K⁻¹ (Zent et al., 2006).
2010). We assumed a column composed of 60% mineral grains and 40% ice (i.e. \(f = 0.4 \)) as this ratio is characteristic to regular sand supported material, and the voids there could be totally filled by late autumn \(H_2O \) condensation. In this case the total thermal conductivity of the modeled column is 1.4 W m\(^{-1}\) K\(^{-1}\) and volumetric heat capacity is 1.2 \(\times \) 10\(^6\) J m\(^{-3}\) K\(^{-1}\) with a corresponding thermal inertia of 1296 J m\(^{-2}\) K\(^{-1}\) s\(^{-1/2}\). Thermal properties of the regolith column were considered constant throughout the simulation. The model was run for several martian years and considered to be converged to a static phase when the maximum temperature difference between the midnight temperature with depth profiles at the vernal equinox (\(Ls = 0 \)) from two consecutive runs was less than 1 K. Using HIRISE and CRISM data together, we focused on the \(H_2O \) ice covered equinox (\(Ls = 0 \)) from two consecutive runs was less than 1 K. Using specification and temporal behavior of water ice there. Using a series of CRISM images between \(Ls \) 175.5\(^\circ\) and \(Ls \) 340.5\(^\circ\) of Richardson crater, it can be noted that within the area of ring features, the bright \(CO_2 \) ice layer that surrounds the spots is missing. The thick winter-time deposited \(CO_2 \) ice cast shadows under low solar elevation for areas that are already defrosted. The thickness of \(CO_2 \) ice next to defrosted areas was estimated using the length of the shadow of the \(CO_2 \) layer and simple geometric calculations (details with graphics can be found at Kereszturi et al. (2011)). Based on shadow length measurements conducted relative to the top of the surrounding bright \(CO_2 \) ice cover, a horizontal depression about 10 cm deep is present at the ring-features. These depressions did not exist in earlier images, suggesting they formed due to localized sublimation of the \(CO_2 \) ice layer. By correlating CRISM based spectral data with HIRISE based optical images, a \(\sim \) 10 cm thick \(CO_2 \) ice layer is present on the terrain surrounding the spots while on the area of outer ring features only a thin (thinner than the 10 cm thick \(CO_2 \) \(H_2O \) ice layer is found (Figs. 2 and 3), and no ice is present within the darkest central core of spots, except for small frost patches at a few locations. For more details on the spectral identification of surface \(H_2O \) ice and its separation from the effect of atmospheric clouds, see Kereszturi et al. (2011).

3.2. Modeling

Using the aforementioned values and methods, the calculated annual temperature curve is compared to the TES based observed values for model validation, as illustrated in Fig. 3. The following

3.1. Observations

Using CRISM and HiRISE data, a thin surface water ice cover was identified in the outer “penumbra” or ring-like structures in the Dark Dune Spots of Richardson crater (Fig. 1). Kereszturi et al. (2011) provide a detailed description of these features and the spatial and temporal behavior of water ice there. Using a series of CRISM images between \(Ls \) 175.5\(^\circ\) and \(Ls \) 340.5\(^\circ\) of Richardson crater, it can be noted that within the area of ring features, the bright \(CO_2 \) ice layer that surrounds the spots is missing. The thick winter-time deposited \(CO_2 \) ice cast shadows under low solar elevation for areas that are already defrosted. The thickness of \(CO_2 \) ice next to defrosted areas was estimated using the length of the shadow of the \(CO_2 \) layer and simple geometric calculations (details with graphics can be found at Kereszturi et al. (2011)). Based on shadow length measurements conducted relative to the top of the surrounding bright \(CO_2 \) ice cover, a horizontal depression about 10 cm deep is present at the ring-features. These depressions did not exist in earlier images, suggesting they formed due to localized sublimation of the \(CO_2 \) ice layer. By correlating CRISM based spectral data with HIRISE based optical images, a \(\sim \) 10 cm thick \(CO_2 \) ice layer is present on the terrain surrounding the spots while on the area of outer ring features only a thin (thinner than the 10 cm thick \(CO_2 \) \(H_2O \) ice layer is found (Figs. 2 and 3), and no ice is present within the darkest central core of spots, except for small frost patches at a few locations. For more details on the spectral identification of surface \(H_2O \) ice and its separation from the effect of atmospheric clouds, see Kereszturi et al. (2011).
characteristics are visible in the image (letters are indicated to describe the phase and features of the curve in the text):

- On the left part of Fig. 3 (wintertime) nearly constant temperature values are observed on Mars (between a1 and a2), where the temperature is at the possible minimal value around the frost point of the atmospheric CO2. Here only one modeled and one observed curve is present, as there is nearly constant temperature all along the martian sol. Modeled and observed curves overlap here, showing that the model well describes observations during this time.

- TES based curves start rising around Ls = 160–170 (b), marking the start of CO2 defrosting when only small patches and not the whole terrain becomes free of CO2 ice. Between Ls = 160 and 230 the temperature rises slowly. During this time (b2–b3), some part of the terrain is still covered and others are exhumed regarding the presence of CO2 ice, but H2O is still present.

- The CO2 ice cover also starts to decrease around Ls = 160 in the model during daytime, while it may recondense onto the surface at nighttime till Ls = 170 (c1–c2). In the model, the wintertime CO2 cover disappeared suddenly from all of the analyzed terrain as we used homogeneous surface, while in reality, due to inhomogenities, there are more CO2 ice patches left behind for an extended period, causing the temperature to increase more slowly.

- Between Ls = 200 and 220, the modeled curve suggests higher temperatures than those observed (d1–d2). This is because the model only simulates the temperature of H2O ice on the surface, while in the case of the observations (because of the low spatial resolution) cold CO2 ice was also in the field of view of the detectors, thus lowering the average temperature for each pixel.

- Around Ls = 225–230 (e1–e2) the observed TES curve starts rising more rapidly, which may be due to water ice disappearing from below the already sublimated CO2 ice cover.

Fig. 2. Richardson crater (a) and a section of the HiRISE image PSP_002885_1080 (Ls = 197.01) (b), and its magnified part (c) with some spots where water ice covers the outer, here gray colored section (white arrows) where we modeled temperature variations.

Fig. 3. Annual curves of TES based temperature observations (dotted) and modeled (mod.) daytime (black) and nighttime (gray) curves according to different solar longitudes (seasons) indicated along the horizontal axis. Daytime and nighttime curves differ from each other except the wintertime constant temperature phase (left), when continuous darkness was present. The letters mark the different sections of temporal changes, described in the text.
The summertime peak temperature is higher in the observed than the modeled case, since the model assumes constant ice cover (taken to be “infinite” water ice thickness) all along the period. Also, the albedo is higher than the barren dunes, and its sublimation also cools the surface.

The amplitude of the modeled diurnal temperature cycle is smaller than the TES based observed fluctuation in summertime, as is expected based on theoretical argumentation. In our model, the water ice stays on the surface even in summertime (we have “endless thickness” of water ice and it cannot be totally lost by sublimation). As the thermal inertia of water ice is larger than the dry regolith, the summertime temperature amplitude will be much smaller than observations.

Errors in simulating surface temperature lie primarily in the assumption of a constant water ice layer and the estimates for albedo. The comparison of observed temperature data versus our simulated results clearly demonstrate the errors that arise from assuming a constant water ice layer. The temperature amplitude during summer is much lower than observed since the surface thermal inertia during this time within the model is much higher than in reality. Albedo values found ranged between 0.23 and 0.26 with an average of 0.25, which was assumed within the model. Application of these maximum and minimum albedo values to our model would shift the simulated maximum temperature to a range of 246–249 K, with the maximum predicted temperature amplitude will be much smaller than observations.

Beyond the temperature values, we estimated the net loss of the H2O ice layer at the analyzed location, taking infinite thickness for the starting condition. A complete analysis of the effect of atmospheric water vapor on the sublimation rate requires a model of the diurnal variation of the planetary boundary layer (Zent et al., 1993). At night, when the planetary boundary layer (PBL) is at its thinnest, local relative humidity can reach saturation and thus sublimation rates will be hindered and condensation can occur. For simplicity, though, a constant value for atmospheric water vapor was assumed within the model and condensation was not accounted for. Most of the mass loss will occur during daytime when both high temperatures and a thick PBL are experienced. Sublimation rates were found for every modeled time step and summed in order to find the total amount of mass loss throughout the model. Fig. 4 shows the sublimation driven height loss in units of thickness for every Ls for the studied atmospheric water vapor values. Most of the ice sublimation occurs after Ls 180 when the southern hemisphere enters spring.

The graphs in Fig. 4 depict the running total net loss of water ice thickness. The daily loss of height at the beginning of the analyzed period at Ls 200 is about 1 μm/sol, while around the end at Ls 220 is around 4 μm/sol. Using the calculated sublimation rate during the whole observed presence of the water ice ring feature in the spots (Ls = 200–220), the total H2O thickness that has been lost is around 30 μm, assuming a dry atmospheric column. The left curve works with assuming “infinite” water ice thickness, while in reality there is no more water ice cover on the surface after about Ls = 225.

The effect of atmospheric water vapor is to reduce the sublimation rate by decreasing the concentration gradient between the surface and atmosphere. As can be seen from Fig. 4, predicted sublimation rates for the relevant time period decreases from 30 μm/sol assuming a dry atmosphere to 0.1 μm/sol assuming 1.5 Pa of atmospheric water vapor. The true value may fall in between these results, as it would incorporate the diurnal and seasonal variation of atmospheric water vapor. The revised Phoenix Lander data suggests that the near-surface atmospheric water vapor remains at 0.17 Pa for most of the day, decreasing to 0.05 Pa at night (Zent et al., 2012; Rivera-Valentin, 2012) – although the interpretation of TEC data is somewhat uncertain. Since for an atmospheric water vapor value of 0.2 Pa, the sublimation rate was 16 μm, the true value may indeed be larger than the expected condensation thickness during autumn.

There are various uncertainties and simplifications in our model approach. The atmospheric water vapor is poorly known, and the exact ratio of the water ice and mineral grains embedded is also unknown and as a result there are uncertainties in the used bulk thermal coefficients. The albedo used is also an approximation from available observations. Despite these points, interpreting the modeled curves together with the observations and theoretical argumentation, the estimated temperature values may be realistic.

![Fig. 4. The model based change of H2O ice height according to solar longitude (a) and the magnified section (b) of the analyzed period for the studied constant atmospheric water vapor values with different shades of gray. The left panel shows the loss of “infinite” thick water ice layer. In reality, though, the total earlier deposited H2O ice might have been lost around Ls = 225–230.](image-url)
4. Discussion

4.1. Water ice at the Dark Dune Spots

Based on the CRISM and HiRISE data, a ring shaped \(H_2O \) ice layer is present on the surface at some so-called Dark Dune Spots in Richardson crater between \(Ls = 200 \) and 220, corresponding to about 38 martian sols. Here \(CO_2 \) ice in the surrounding and water ice in the ring-like area of the spots was identified by spectral data and confirmed by optical images (see details in Kereszturi et al. (2011)). Using modeled surface temperature values, the temperature on the water ice covered surface could reach 195–220 K during the “warmest” part of the day in this period. Analyzing the sublimation loss, we find that a predicted maximum of 30 \(\mu m \) of ice is lost between the period of \(Ls = 200 \) and 220. This implies for our observations that a layer approximately 30 \(\mu m \) thick may have been present on the surface at the beginning of the sublimation period, otherwise the water ice layer would have disappeared earlier.

The estimated 30 \(\mu m \) value is higher than the average 10 precipitable micrometer characteristic for the martian atmosphere, but cold trapping could produce such a thickness collecting \(H_2O \) continuously from the atmosphere as virtually any atmospheric circulation will deliver greater than unit atmospheric vapor column to a local cold trap. For example, it is possible that inhomogeneous ice condensation happens in autumn because of inhomogeneities in the thermodynamic properties of the surface material, and/or local meteorological effects (winds, shadows of surrounding heights, etc.). Elevated water ice thickness might also be produced at these spots by the \(CO_2 \) jet activity blowing up and depositing the water ice covered grains at the ring-like area of the spot during an earlier phase, increasing the local \(H_2O \) mass there. The observations suggest that the total ice mass at the observed locations disappears around this late date from the surface, while in greater depth there still may be intergranular ice, as it is suggested by thermal inertia and neutron spectrometric measurements.

4.2. Possible liquid at the Dark Dune Spots

It is interesting to analyze the theoretical possibility of liquid interfacial water along the ice–mineral boundary at the observed locations. Based on theoretical computations and laboratory observations, a quasi-liquid thin film exists at the interface that is kept in liquid phase mainly by Van-der-Waals forces (Mohlmann, 2004) above a threshold temperature. The exact temperature value depends on how much the minerals are in contact with water ice, and if there are salts embedded in the ice. Assuming pure \(H_2O \) ice, more than one monolayer thick liquid film exists above \(\sim 180 \) K (Mohlmann, 2004, 2008).

Using the model based temperature values, the minimum (nighttime) and maximum (daytime) values at the top of the isolated ice layer at the beginning of the observed period (\(Ls = 200 \)) are 178 and 195 K respectively, while at the end of the ice presence (\(Ls = 220 \)) these values are 200 and 220 K respectively. During this period, liquid interfacial water may indeed be present. In the case there exists other mechanisms to depress the melting point (e.g. salts), bulk brines may even be present. Taking the often cited Mars relevant ferric sulfate at a concentration of \(C = 48\% \), the melting point of water is depressed to 205 ± 1 K (Pestova et al., 2005; Chevrier and Altheide, 2008; Renno et al., 2009). Perchlorates were also found to be present at the landing site of Phoenix, which might decrease the melting point, in the case of 52 wt.% sodium perchlorate the eutectic point is 236 K, in the case of 44 wt.% of magnesium perchlorate the melting point is around 206 K (Chevrier et al., 2009). These arguments suggest that in the presence of salts, liquid brines might be present at the locations observed in this work. Though analysis of CRISM data did not demonstrate a liquid water signature in our earlier work (Mohlmann, 2008), we cannot rule out the presence of brines.

5. Conclusions

Analyzing the water ice covered ring-shaped area of the Dark Dune Spots at 72°S latitude, using accepted average martian atmospheric vapor concentration during the period of \(Ls = 200–220 \), the surface ice can reach the maximum daytime temperature between 195 and 220 K. This value is above the threshold limit where liquid interfacial water forms at the ice–mineral interface. Several earlier theoretical considerations (Zent et al., 1993; Mohlmann, 2004, 2010) showed that interfacial water may be on the martian surface. It is shown here for the first time that, at least in Richardson crater, there exists the proper environmental conditions for interfacial water. The thin interfacial layer may be present around the dune grains embedded in the top ice layer of the ring structure. Although the southern hemisphere of Mars is dryer than the northern hemisphere, based on the observations of water ice made here, a thin interfacial layer of liquid water may be present ephemerally.

The total simulated ice thickness that has been lost in this period is around 30 \(\mu m \). This value is larger than the expected thickness by homogeneous atmospheric condensation, but it is realistic since in early spring, \(CO_2 \) gas driven jet activity may cover mineral grains with water ice at these ring structures.

Based on the observations and theoretical argumentation, the following structures and sequence of events may be relevant for the surface layer of the analyzed dunes in this springtime period: The basaltic grains plus fallen atmospheric dust could be cemented together with \(H_2O \) ice formed during autumn. This layer formed by direct condensation from the atmosphere during autumn and possibly by falling and accumulating ice crystals or snowflakes, as was observed by the Phoenix Lander (Smith et al., 2009). Later, \(CO_2 \) deposited on the surface and the whole terrain cooled down substantially. During springtime, when stronger insolation begins in the region, \(CO_2 \) gas-jets shoot dark dust above the ice layer. Later a gray ring forms around the center of the outburst, partly by this solar heated dark dust, which lowers the albedo. \(CO_2 \) ice then sublimates away and a thin \(H_2O \) ice covered surface layer is left behind. At the modeled temperature values, a thin layer of interfacial water or brine may be present at the mineral–ice interface for the warmer hours of a day, while the ice cover is still there. Based on our observations this may last for about 38 sols.

These liquid phases may have impact on the chemical and weathering processes and could also contribute to the formation of flow-like features (Mohlmann and Kereszturi, 2010) emanating from neighboring smaller spots, although dry mass movements may also produce them (Hansen et al., 2010). In this work, we have identified an important period at the analyzed latitude band and at small surface locations where focused analysis might give more information on the prospect of liquid water on Mars. Even though the northern martian hemisphere is water rich, the southern hemisphere has been shown to also be important for the occurrence of water ice and liquid water. In the search for the ideal location of bulk brine formation on Mars, these thin liquid water layers might provide example sites. These sites are also ideal for the identification of recent water-related alteration on Mars. The presence of liquids proposed in this study may even have biological implications at the DDS (Szathmary et al., 2007), though a more sophisticated model including the solid state greenhouse effect and the subsurface ice would be required for a biological investigation.

Acknowledgments

This study was supported by the ESA ECS Project No. 98076 (Co 4000105405) and the OTKA PD 105970 by the Hungarian Academy
References

Ceamanos, X., Douté, S., 2009. Spectral smile correction in CRISM hyperspectral images. AGU (Fall Meet.).

