324 Brook Street, Box 1846, Providence, Rhode Island 02912 / 401-863-2526 / Geological_Sciences@brown.edu

1. DATABASE OF PYROCLASTIC DEPOSITS ON MERCURY

a. Relevant references and description of databases:

Kerber, L., J. W. Head III, D. T. Blewett, S. C. Solomon, L. Wilson, S. L. Murchie, M. S. Robinson, B. W. Denevi, and D. L. Domingue (2011), The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1-3, Planet. Space Sci., 59, 1895-1909, doi: 10.1016/j.pss.2011.03.020.

Goudge, T. A., J. W. Head III, L. Kerber, D. T. Blewett, B. W. Denevi, D. L. Domingue, J. Gillis-Davis, K. Gwinner, J. Helbert, G. M. Holsclaw, N. R. Izenberg, R. L. Klima, W. E. McClintock, S. L. Murchie, G. A. Neumann, D. E. Smith, R. G. Strom, Z. Xiao, M. T. Zuber, and S. C. Solomon (2014), Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data, J. Geophys. Res., 119, 635–658, doi: 10.1002/2013JE004480.

b. Global distribution files.

2.  KILOMETER-SCALE ROUGHNESS MAPS OF MERCURY

a.   Relevant references and description of techniques:

Kreslavsky, M.A., J.W. Head, G.A. Neumann, D.E. Smith, M.T. Zuber (2014), Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units, Geophys. Res. Lett., in press.

b. Available km-scale roughness maps.

 

3.  KILOMETER-SCALE ROUGHNESS MAPS OF MARS

a.   Relevant references and description of techniques:

Kreslavsky, M., and J. Head (1999), Kilometer-scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data, J. Geophys. Res., 104 (E9), 21,911-21,924.

Kreslavsky, M. A., and J. W. Head (2000), Kilometer-scale roughness of Mars: Results from MOLA data analysis, J. Geophys. Res., 105 (E11), 26,695-26,711.

b.   Available km-scale roughness maps.

4.  OPEN-BASIN LAKES ON MARS

a.  Relevant references and description of techniques:

Fassett, C. I., and J. W. Head (2008), Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology, Icarus, 198, 37-56, doi: 10.1016/j.icarus.2008.06.016.

Fassett, C. I., and J. W. Head (2008), The timing of martian valley network activity: Constraints from buffered crater counting, Icarus, 195, 61-89, doi:10.1016/j.icarus.2007.12.009.

b.  Available shapefiles/database.


5.  LUNAR CRATERS EQUAL TO OR GREATER THAN 20 KM IN DIAMETER

a.  Relevant references and description of techniques:

Head, J.W., C.I. Fassett, S.J. Kadish, D.E. Smith, M.T. Zuber, G.A. Neumann, and E. Mazarico (2010), Global distribution of large lunar craters: Implications for resurfacing and impactor populations, Science, 329, 1504-1507, doi:10.1126/science.1195050.

Kadish, S.J, C.I. Fassett, J.W. Head, D.E. Smith, M.T. Zuber, G.A. Neumann, and E. Mazarico (2011), A global catalog of large lunar crater (≥20 KM) from the Lunar Orbiter Laser Altimeter, Lunar Plan. Sci. Conf., XLII, abstract 1006.

b.   Available shapefiles/database.


6.  RELAB-RELATED DATA COLLECTIONS

a.  About the collections:

Various planetary spectroscopy datasets, including laboratory spectra of planetary samples and analogues acquired in the Brown University Keck/NASA Reflectance Experiment Laboratory (RELAB).

b.  Data collections.

7.  CRATERS ≥20 km ON MERCURY FROM MESSENGER AND MARINER 10 DATA

a.  About the data:

MESSENGER and Mariner 10 data have been used to construct a new database of large Mercury craters (Fassett et al., 2011). 

b.  Relevant reference:

Fassett, C. I., S. J. Kadish, J. W. Head, S. C. Solomon, and R. G. Strom (2011), The global population of large   craters on Mercury and comparison with the Moon, Geophys. Res. Lett., 38, L10202, doi: 10.1029/2011GL047294.

c.  Data collecton.

8.  UPDATED VERSION OF THE GLOBAL ≥20 km CRATER CATALOG BASED UPON THE ORBITAL IMAGING OF MERCURY BY MESSENGER

a. About the data:

This data includes a more complete assessment of the probable-to-certain impact basins on the surface of Mercury, as well as includes a number of additional craters, particularly in locations where the imaging from the MESSENGER flybys and Mariner 10 observations were not ideal for crater recognition.

b.  Data collection.